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Abstract. In this paper we consider partnership deals under un-
certainty but with downstream flexibility. We confine ourselves to
bilateral deals and focus on the effect of options on the synergy
set, the ‘core’, of a partnership deal. We distinguish between co-
operative options, which are exercised jointly and in the interest
of maximizing the total deal value, and non-cooperative options,
which are exercised unilaterally in the interest of one partner’s pay-
off. We provide a simple framework that illustrates options effects
in a two-stage model. The model can be readily extended to a
binomial lattice. We investigate options effects in the presence of
risk-aversion and in the presence of complete markets.

1. Introduction

Partnership deals are a driving force of the modern economy. Joint ven-
tures of car manufacturers in developing economies, alliances between
airlines, co-development deals between pharmaceutical and biotech com-
panies, production sharing contracts between oil majors and national
oil companies, to name but a few industries where partnership deals are
significant drivers for value. Partnerships aim to establish synergies by
combining core competencies of the partners to form a unique offering
that neither partner could provide alone.

Structuring successful partnership deals is an immensely difficult task
and arguably more an art than a science. Nevertheless, science can
help to shed light on deal values. Two key questions are: How should
the contract be structured to generate significant total value at an ac-
ceptable level of risk? How should this total value and the associated
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risks be shared amongst the partners?

The academic discussion on the distribution of benefits from coopera-
tion has been inspired by the seminal work of Nash [12, 13] and Shapley
[16], which led to the advent of bargaining theory and cooperative game
theory. This literature is largely concerned with the allocation of value,
not of risk. The models are mainly deterministic and combinatorial.
A first strand of this literature relevant to our work is concerned with
cooperative game theory in the presence of stochastic payoffs, see e.g.
Granot [5] and Suijs and Borm [19]. A second relevant strand of the
literature focuses on efficient risk sharing and the formation of syn-
dicates, see e.g. Wilson [21] and Pratt [14]. We integrate these two
strands of literature with elements of the real options literature in our
study of the effect of optionality in partnership deals, a topic which, to
our best knowledge, has not been thoroughly investigated before.

Generally speaking, explorations of effects of uncertainty are domi-
nated by two mental concepts: Diversification and Optionality. Di-
versification is a passive risk management tool and presumes no direct
influence on the management of projects or companies. It is therefore
particularly appealing to investors and is the key concept behind the
seminal work of Harry Markowitz [9] on portfolio choice and of William
Sharpe [17] on the capital asset pricing model, for which they received
the 1990 Nobel prize in economics.

In contrast, optionality is an active risk and opportunity management
technique and is therefore particularly appealing to managers. Option-
ality is based on the idea that creating the right but not the obligation
to a potential future action creates value in an uncertain environment.
The concept of optionality and the valuation thereof in the context of
financial derivatives has been the basis for the 1997 Nobel award to
Robert Merton and Myron Scholes [10, 1], whose work with the late
Fisher Black has created the field of financial engineering. Indeed, their
ideas have moved beyond the realm of financial derivatives into capital
budgeting and project valuation. Steward Myers [11] was amongst the
first to advocate that significant optionality, such as growth opportuni-
ties, ought to be included in the valuation of a project or company and
that appropriate use of the work of Black, Scholes and Merton might
make this possible. Myers saw this as an opportunity to bridge the
gap between strategy and finance and coined the term ‘real options’
for this line of thinking. Shortly afterwards, Brennan and Schwarz [2]
illustrated how such real options could be valued with a Black-Scholes
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approach. These seminal papers, together with the monograph by Dixit
and Pindyck [4], who substantially elaborated the ideas, spurred a sig-
nificant amount of academic work over the past two decades and led
to the establishment of real options as a distinct area in finance with
significant uptake in the strategy literature.

It is surprising that little work has been done to date to understand
the effect of real options in partnership deals, in particular with regard
to fair splits of risk and return from a partnership. Our aim in this
paper is to fill this gap to some extent and to present a framework that
allows the investigation of contract issues with a real options flavour.
We approach this agenda by combining concepts from cooperative game
theory and real options theory. Our main emphasis is on the impact of
options on the core of a cooperative game. The core of a deal concep-
tualizes a notion of negotiation set or synergy set. It comprises of those
allocations of the total deal value to the players for which no player
can do better by not agreeing to the deal. For the sake of simplicity
we will focus on bilateral partnerships.

2. Options deals: Cooperative vs. non-cooperative
options

An options deal is a partnership deal with significant future flexibility.
Options are rights but not obligations to future actions. In a partner-
ship situation this raises the question, who has the right to the action?
There are essentially two types of options deals, depending on who has
this exercise right:

(1) In pure partnership deals exercise decisions are taken jointly and
in the interest of maximizing the total value of the deal. We
call such flexibilities ‘cooperative options’. A typical example
is a decision to jointly market a product after a successful R&D
effort.

(2) In contrast, some flexibility might be privately owned by one
of the partners, who has the right to exercise it in the interest
of his or her own payoff, rather than the sum of payoffs result-
ing from the deal. We call such flexibilities ‘non-cooperative
options’. A generic non-cooperative option on a deal is to re-
nege if circumstances do not unfold as anticipated, accepting
possible litigation costs as the price of exercise.

The notion of cooperative options emphasizes the collaborative nature
of partnerships, whilst non-cooperative options acknowledge the tran-
sient nature of deals and regard them as part of competitive strategies
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of firms who will ultimately act in self-interest. Non-cooperative op-
tions can be explicitly acknowledged in a partnership contract. For
example, a clause in a co-development contract between a biotech and
a pharmaceutical company may allow the biotech company to opt out
of further co-development and receive agreed milestone and royalty
payments instead. The smaller company may want to exercise this
option if the costs of further development become prohibitively large
or promising candidate drugs have emerged further upstream in the
company’s R&D pipeline and are regarded a better use of the com-
pany’s capital. Furthermore, as we shall see later, the presence of
non-cooperative options reduce the synergy set in favour of the option
holder and thereby steer the outcome of a negotiation away from less
desirable sharing arrangements.

Non-cooperative options in deals can be thought of as a cooperative
game followed by a non-cooperative game. The cooperative game, i.e.,
the deal contract, sets the framework for later non-cooperative behav-
iour, which has to be taken into account in the design and valuation of
the deal.

Before we investigate issues around non-cooperative options in more
detail, we will discuss cooperative options, which by their very nature
fall into the remit of cooperative game theory. Cooperative options are
exercised to maximize the total deal value. Therefore, deal valuation
and optimal exercise issues are similar to standard real options analysis.
However, cooperative options can have an impact on the negotiation
set, also known as the core or the synergy set of the deal, which is
the set of allocations of the payoffs to the partners that will make all
partners better off than without the deal. We illustrate this fact by
way of a stylized example. This example will also serve as a gentle
introduction to real options arguments for a cooperative game theory
audience and to concepts from cooperative game theory for readers
from the real options community.

2.1. The core of an options deal: An illustrative example.

2.1.1. Setting. Assume a biotech company has a drug under develop-
ment, which has successfully passed the clinical trials and is now await-
ing FDA approval. The company estimates the present value of cash
flows from the drug to be CB for a launch investment of IB < CB. The
biotech company has limited production capabilities and its sales and
distribution network is rather inefficient compared to the major players
in the market. The company is therefore negotiating a co-marketing
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deal with a large pharmaceutical company. The cash flow projection
for the co-marketed product is CB+P and the launch investment will
be IB+P . How should the value (CB+P − IB+P ) of the deal be shared
in a fair way?

2.1.2. The core of the game. The core of this cooperative game is the
set of revenue allocations that make both partners better off than going
alone. By going alone, the biotech company makes an estimated profit
of CB − IB, while the pharmaceutical company receives nothing. If xB

and xP denote the share of the deal value for the biotech and phar-
maceutical company, respectively, and neglecting opportunity costs of
capital considerations for simplicity, the conditions for the core are

xB ≥ CB − IB

xP ≥ 0

xB + xP = CB+P − IB+P .

In other words, a biotech profit share xB is in the core if

CB − IB ≤ xB ≤ CB+P − IB+P ,

with the residual profit xP = CB+P − IB+P − xB being allocated to
the pharmaceutical company. The precise sharing arrangement will be
a matter of negotiation, but whatever the negotiation result, it should
lie in the core.

2.1.3. The core of a game with uncertain payoffs. Assume a competi-
tor is developing a drug that will treat the same indication. If the
competitor is successful in bringing its drug to the market, the revenue
potential of the biotech’s drug will be greatly reduced. In the upside
scenario of failure of the competitor, the cash flow projection for the
drug if the biotech company goes alone rises to uBCB, with uB > 1; in
the downside scenario of a competitor success, this projection is only
dBCB, with dB < 1. We assume that p is the chance of failure of the
competing drug and, for simplicity, that the biotech company has zero
risk aversion, i.e. it is indifferent to an amount of money for sure or a
gamble with the same expected payoff. To make sure that the initial
valuation of CB for the future cash flows is consistent with the scenario
assumptions, we require that

(1) uB = 1 + sB

√
1− p

p
, dB = 1− sB

√
p

1− p
,
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where sB is a measure of volatility1. The cash flow uncertainty is easily
depicted in a scenario fork:
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In the partnership deal the present values of the cash flows are pro-
jected as uB+PCB+P in the upside and dB+PCB+P in the downside
scenarios. Again, under the zero risk aversion assumption, this sce-
nario assumption is consistent with the foregoing valuation of CB+P if
the upwards and downwards multipliers uB+P , dB+P have the form (1)
with a possibly different volatility sB+P .

An allocation in a game with uncertain payoffs must specify the payoff
allocations for every future scenario. Let us denote by xB,u, xB,d and
xP,u, xP,d the allocations for the biotech and pharmaceutical company in
the upside and downside scenarios, respectively. In view of the zero risk
aversion assumption, a profit allocation is in the core if the following
conditions hold

pxB,u + (1− p)xB,d ≥ CB − IB

pxP,u + (1− p)xP,d ≥ 0

xB,u + xP,u = uB+PCB+P − IB+P

xB,d + xP,d = dB+PCB+P − IB+P .

The first two conditions guarantee that each player’s valuation of his
or her share of the profit is at least as large as the value from going
alone. The final two conditions guarantee that the sharing agreements

1A geometric Brownian motion with drift ν and volatility σ is approxi-
mated by a binomial lattice with upwards probability p, period length ∆t and
upwards and downwards multipliers u = exp

(
ν∆t + σ

√
∆t

√
1−p

p

)
and d =

exp
(
ν∆t− σ

√
∆t

√
p

1−p

)
, respectively, see Luenberger [8], p. 314. The simplified

form (1) is a first order approximation of the latter formulas for small sB = σ
√

∆t
and ν = 0.
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Figure 1. The core of the Cooperative Game

sum up to the total value in each scenario.

Eliminating xP,u and xP,d through the two equations results in a rep-
resentation of the core in (xB,u, xB,d)-space:

(2) CB − IB ≤ pxB,u + (1− p)xB,d ≤ CB+P − IB+P .

The final equation is a consequence of the assumption that uB+P , dB+P

satisfy a relation of the form (1), with B replaced by B + P .

The core is a strip in (xB,u, xB,d)-space, as depicted in Figure 1. Note
that under the zero risk aversion assumption the biotech company is
indifferent between revenue allocations on a line pxB,u+(1−p)xB,d = V
and values them all at the expected value V . The same is true for the
pharmaceutical company, which assigns to these sharing arrangements
the residual value CB+R − V . We will see later in the paper that more
interesting risk-return tradeoffs occur in the presence of risk aversion.

2.2. A cooperative option. Next suppose that the companies can
wait with the launch investment until they know the result of the tri-
als for the competing drug and therefore the cash flow scenario. For
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simplicity we assume that there is no cost of waiting. In this case,
the companies can avoid a loss in the downside case by not launching
the drug. Under risk-neutrality, the value of the drug for the biotech
company alone is now

(3) VB = pmax{uBCB − IB, 0}+ (1− p) max{dBCB − IB, 0},
while the value for the partnership becomes
(4)
VB+P = pmax{uB+PCB+P−IB+P , 0}+(1−p) max{dB+PCB+P−IB+P , 0}.
The conditions for the core are

pxB,u + (1− p)xB,d ≥ VB

pxP,u + (1− p)xP,d ≥ 0

xB,u + xP,u = max{uB+PCB+P − IB+P , 0}
xB,d + xP,d = max{dB+PCB+P − IB+P , 0}.

In (xB,u, xB,d)-space the core moves to

VB ≤ pxB,u + (1− p)xB,d ≤ VB+P .

In other words the geometrical shape of the core has not changed but
the option has shifted the core and may have changed its diameter.

To illustrate this effect, let us assume that

max{dBCB, dB+PCB+P} ≤ min{IB, IB+P}
min{uBCB, uB+PCB+P} ≥ max{IB, IB+P},

i.e., neither the biotech alone, nor the partnership will launch in the
downside scenario but both will launch in the upside scenario. In this
case the total values VB and VB+P of the go-alone project and the deal
are

(5)
VB = p(uBCB − IB)

VB+P = p(uB+PCB+P − IB+P ).

Following Trigeorgis [20, 18], we find it convenient to express the total
value as the sum of an ‘asset value’ (or ‘passive value’) and an ‘op-
tion value’. The total asset values, i.e. the values without flexibility,
were calculated above as V A

B = CB − IB and V A
B+P = CB+P − IB+P ,

respectively, which leaves as total option values

V O
B = (puB − 1)CB + (1− p)IB

V O
B+P = (puB+P − 1)CB+P + (1− p)IB+P .

The core of this game with a cooperative option is
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(6) VB ≤ pxB,u + (1− p)xB,d ≤ VB+P .

It is possible to represent this core as the sum of two cores, an ‘asset
core’, which does not take optionality into account, and an ‘options
core’. Using (1),(5) and dividing by p we obtain the equivalent core
representation

CB − IB + sB

s
1− p

p
CB ≤ xB,u +

1− p

p
xB,d ≤ CB+P − IB+P + sB+P

s
1− p

p
CB+P .

We split the biotech’s allocation into two components xB,ω = xA
B,ω +

xO
B,ω, where ω ∈ {u, d}. The first component xA

B,ω is the biotech’s share
of the total ‘asset value’ (or ‘passive value’) of the deal, the second
component allocation xO

B,ω is its share of the total ‘option value’ of the
deal. The core for the asset component is the core of the game without
the option, i.e.,

CB − IB ≤ pxA
B,u + (1− p)xA

B,d ≤ CB+P − IB+P .

In view of the above representation of the core for the aggregate allo-
cation (xB,u, xB,d) the core of the option component xO

B,ω = xB,ω−xA
B,ω

becomes

sB

√
1− p

p
CB ≤ (1− p)xO

B,u +
(1− p)2

p
xO

B,d ≤ sB+P

√
1− p

p
CB+P ,

which is equivalent to

sB

√
p

1− p
CB ≤ pxO

B,u + (1− p)xO
B,d ≤ sB+P

√
p

1− p
CB+P .

The options core is independent of the investments IB or IB+P and is
empty if

sBCB > sB+PCB+P .

2.2.1. The effect of volatility on the core of a cooperative option. Recall
that the lower bound is the minimal share of the total option value of
the deal that the biotech might accept, whilst the upper bound is the
maximal share that it can expect. In other words, the larger the lower
bound, the better the negotiation position for the biotech company, the
larger the upper bound, the better the negotiation position for both
companies.

The upper bound of the biotech’s core increases with increasing deal
volatility sB+P , giving both players more synergies to negotiate over.
The lower bound of the biotech’s options core grows, ceteris paribus,
linearly with the volatility sB of the go-alone revenue estimate. The
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larger that volatility, the more the core shrinks. It shrinks by push-
ing out lower values for the biotech, i.e. an increase of the biotech
volatility is favourable for the biotech company. This is because the
increased go-alone volatility increases the biotech’s go-alone value but
not the value of the deal, assuming the deal volatility remains constant.

2.2.2. Linear contracts. A specific type of contract that is often en-
countered in practice pays a fixed amount β and a share α of the rev-
enues. The corresponding allocations of the total deal value CB+P −
IB+P for the biotech company are

xB,u = αuB+PCB+P + β

xB,d = αdB+PCB+P + β.

The core (6) of the options deal in terms of the new parameters α, β
becomes

VB ≤ αCB+P + β ≤ VB+P .

This illustrates the tradeoff of shares in the risky revenues against re-
ceiving a fixed amount. If we fix the royalty rate α, we are left with
negotiations over the share β of the investment costs within the core

VB − αCB+P ≤ β ≤ VB+P − αCB+P .

We will return to linear contracts later in the paper, when we deal with
the effect of risk aversion.

2.3. A non-cooperative option. Let us now assume that the deal
gives the biotech company unilateral flexibility to opt out of co-marketing
of the drug before committing to the launch cost, whilst the pharma
company is locked into the deal. Assume the biotech would receive a
fixed amount Z if it exercised the opt-out option. The option would be
exercised only if the payoff it offered to the biotech is higher than the
biotech’s valuation of the agreed profit share. Assume the launch deci-
sion will be taken after the fate of the competitor drug is observed. In
this case, the biotech payoff will be max{xB,ω, Z}, where ω ∈ {u, d} is
the observed scenario. Given agreed profit shares xB,u, xB,d for the
biotech company, the expected revenue for the biotech company is
pmax{xB,u, Z} + (1 − p) max{xB,d, Z}; the pharmaceutical company
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receives the residual revenue. The conditions for the core in (xB,u, xB,d)-
space are now

pmax{xB,u, Z}+ (1− p) max{xB,d, Z} ≥ CB − IB

p(uB+PCB+P − IB+P −max{xB,u, Z})
+(1− p)(dB+PCB+P − IB+P −max{xB,d, Z}) ≥ 0;

the first condition ensures that the biotech has an incentive to par-
ticipate in the deal, the second condition guarantees the same for the
pharmaceutical company. The core in (xB,u, xB,d) space is therefore

CB − IB ≤ pmax{xB,u, Z}+ (1− p) max{xB,d, Z} ≤ CB+P − IB+P .

Assuming that xB,d ≤ xB,u, i.e. the biotech gets at least as much
in the upside scenario as in the downside scenario, there are three
cases, depending on the value of Z and the agreed sharing arrangement
(xB,d, xB,u):

(1) If Z ≤ xB,d then the biotech will not exercise the option in any
of the two scenarios. The core of the deal coincides with the
core if there is no option:

CB − IB ≤ pxB,u + (1− p)xB,d ≤ CB+P − IB+P .

(2) If xBd
< Z ≤ xB,u then the biotech will only exercise in the

downside scenario and the core becomes

CB − IB ≤ pxB,u + (1− p)Z ≤ CB+P − IB+P .

(3) If Z > xB,u then the opt-out option will be exercised in both
scenarios. The core condition then reduces to a condition for
feasible Z values:

CB − IB ≤ Z ≤ CB+P − IB+P .

Figure 2 illustrates the options effect on the core of the game. The core
is now the shaded area. Three distinct cases can arise:

(1) The Opt-out payoff lines intercept below (South West of) the
core. In such a case the option does not really change anything
for the risk neutral agents. It does however shrink the negotia-
tion set in the sense that the payoffs in each state can no longer
be too different from each other.

(2) The Opt-out lines intercept in the core. This is depicted in the
figure 2. For this to happen the lump sum is higher than the
payoff of the lower state but less than the payoff of the higher
state. The change in the core is in the favour of the option
owner.
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Figure 2. The core of the cooperative game with the
Biotech having the Opt-out option

(3) The Opt-out lines intercept above (North East of) the core. In
this case the core is empty. This happens only if the opt-out
payoff is higher than the payoff of the up state payoff.

2.3.1. A non-cooperative option for the pharma company. An example
of downstream flexibility for the pharma company would be the right
for the pharma to buy out the biotech for a fixed sum S. This option
would be exercised only if the the payoff from exercising is higher than
the agreed payoff xP,ω making the total payoff to the Pharma equal
CB+P − IB+P −min {XB,ω, S}. This option would reshape the core as
shown in figure 3.
Again we can identify three distinct cases:

(1) The Buy-out option doesn’t restrict the core for the risk neutral
players but brings the payoffs of the two states closer together.

(2) The Buy-out lines restrict the core. This happens if the Buy-
out lines intercept higher than the minimum line the biotech is
willing to accept. This is depicted in figure 3.

(3) The core is empty. This happens if the Buy-out lines intercept
lower than the minimum line the biotech is willing to accept.
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Figure 3. The core of the cooperative game with the
Pharna having the Buy-out option

2.3.2. Compound non-cooperative options. Some more interesting sit-
uations might arise if both players have options which they exercise
non-cooperatively. For example, the biotech may have the right to de-
cide whether to opt out or not. If it decides not to opt out the pharma
will decide if it wants to buy them out or not. Such sequential options
can be dealt with in a similar way as above, evaluating the phases
backwards in time for all scenarios:

Phase 4: Each agent exercises her options egoistically
Phase 3: The partnership exercises options jointly that maximise the to-

tal value of the project
Phase 2: Uncertainty is resolved
Phase 1: The agents form a coalition, decide on the optimal course of

action (including a contingency plan) and decide how to split
the payoffs.

The described example is a situation where options are exercised se-
quentially. In other situations, agents may have to exercise downstream
flexibility simultaneously. This would give rise to a non cooperative
game on the core of the cooperative game, which would go beyond the
scope of this paper.
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3. The effect of risk aversion

The presence of possibly different levels of risk aversion introduces two
interesting issues:

(1) If two players have different levels of risk aversion they should
be willing to tradeoff risk. This brings up the question how can
risk be shared in an efficient way?

(2) If two players have different levels of risk aversion, they may well
come to different conclusions about optimal options exercise of
a cooperative option. How can these differing preferences be
reconciled?

We address these issues in this section.

We will focus on linear contracts, i.e., agreements involving a share
of a certain payment, e.g. a share of known investment costs, and a
possibly different share of an uncertain payoff, e.g. royalties on uncer-
tain revenues. Sensible sharing arrangements of the risky payoff should
depend on the level of risk aversion of the players. It is natural to ex-
pect the less risk averse agent to take on more risk. Agents who take
on more risk will rightly ask for compensation, in terms of the certain
payment, because they are providing a type of insurance for the more
risk averse partner. This can result in a win-win situation, i.e., the
synergies that drive a partnership may well stem from differing levels
of risk aversion. The deterministic payment depends on the known
value that each player brings to the partnership, such as a reduction in
investment cost through cooperation. Thus, the consideration of fixed
deterministic payoff and shares in a gamble essentially decouples the
‘stochastic’ synergies obtained by exploiting differing risk aversions and
the ‘deterministic’ synergies obtained through cooperation. It is known
that a suitable linear risk sharing rule is a Pareto-efficient risk sharing
agreement under certain assumptions on the agents’ utility functions,
see Pratt [14] or Christensen and Feltham [3].

We will illustrate the risk sharing issue for a simple two player part-
nership deal. We will assume that the stochastic payoff X of the deal
follows a binomial process as in the previous examples. The two play-
ers have different attitudes towards risk: the first player is more risk
averse than the second. We model their payoff preferences via expected
utility functions: Player i prefers a possibly uncertain payoff X over an
uncertain payoff Y if E[ui(X)] > E[ui(Y )], where ui is a suitable util-
ity function. For illustrative purposes we choose negative exponential
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utility functions for the two players:

E[u1(X)] = −E[e
− X

β1 ]

E[u2(X)] = −E[e
− X

β2 ],

with β1 = 0.2 > β2 = 0.1. Since both players are risk averse, they
would both prefer to receive the expected payoff of a risky gamble
rather than take the gamble. Between two symmetric gambles with
the same expectation, they would prefer the one with lower risk (lower
variance).

Since the players’ perception of risk are fully captured by an expected
utility, it is possible to gauge how much a risky gamble would be worth
to each player. In other words, given a gamble X, what deterministic
payment mi would make agent i indifferent to receiving mi for sure or
taking the gamble? This value is called the certainty equivalent of the
risky gamble. It satisfies ui(mi) = E[ui(X)], i.e., mi = u−1

i (E[ui(X)]).

Suppose the two players have to choose between two projects, where
project 1 has a lower risk but also a lower return, e.g.

Project1

&%
'$

?

&%
'$
−10

&%
'$

10

Q
Q

Q
Q

Q

�
�

�
�

�
50%

50%

Project2



16 NICOS D SAVVA & STEFAN SCHOLTES

&%
'$

?

&%
'$
−10.1

&%
'$

10.8

Q
Q

Q
Q

Q

�
�

�
�

�
50%

50%

Based on their utility functions, the first agent would prefer project 1
while the second agent would prefer project 2. Naturally, the certainty
equivalent for player 1 from project 1 is higher than from project 2 and
vice versa for player 2. So if the players had to select one project to
develop in partnership they would disagree which one to choose.

What is the optimal way for the players to share the risk involved in
such a project? As mentioned above, we will constrain ourselves to
linear contracts, i.e., the agreement will involve a split that has a de-
terministic part di and a share ri in the stochastic gamble. We assume
that d1 + d2 = 0 and r1 + r2 = 1, ri ≥ 0. The total payoff of player i
from the project will be di + riX, where X is the random payoff of the
gamble. This is illustrated in figure 4; we are looking for an allocation
along the diagonal in the space of state-payoffs. The closer we are to
the origin, more risk is taken up by agent 2 and the less risk by agent
1. In the example of section 2 where players were risk neutral, their
utility indifference curves were straight lines and utility for the biotech
company was increasing in magnitude the further away these lines were
from the origin. Furthermore, the utility curves were all parallel to each
other, as can be seen in figure 1. Now the payers are risk averse and
the indifference map is no longer linear as can be seen in figure 4.

Both players prefer to take up as little risk as possible. However, the
risk aversion induced by the concave utility function reduces the mar-
ginal benefit of a decrease in risk taking. Furthermore, this rate of
reduction of marginal benefits will be different for both players, in
view of their differing risk aversion levels. However, in the context
of a partnership, players cooperate to maximise the total value of the
game. We model this objective by assuming that the players wish to
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Figure 4. Efficient risk sharing

maximise the sum of their certainty equivalents. The optimality con-
dition for the royalty rate r that maximises the perceived total value
of the game is the point where the marginal value of taking up some
infinitesimal fraction of the risky project is the same for both agents.
If the marginal benefits were different, we would be able to add to the
total value by taking away an infinitesimal amount of risk from the
player with the smaller marginal benefit and giving it to the player
with the larger marginal benefit. This can be seen in figure 5.

Formally, the agents solve the maximisation problem maxr1,r2(m1(d +
r1X)+m2(−d+(r2)X). Since certainty equivalents satisfy m(d+Y ) =
d + m(Y ) for deterministic payoffs d and stochastic payoffs Y , the
problem reduces to maxr(m1(rX) +m2((1− r)X). Here, we have also
used the fact that r1 + r2 = 1. The first order optimality condition

is dm1(rX)
dr

= −dm2((1−r)X)
dr

. Although this condition specifies how much
risk each player will take, it does not determine the total payoff, as the
deterministic amount d1 = −d2 that will change hands has not been
decided yet. If the players agree to share risk in the optimal way, as
defined above, then it is this amount d1 that the players will have to
negotiate over. The cooperative game is reduced to a deterministic
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Figure 5. The risk sharing problem

game with a core in the standard sense.

Returning to the problem of selecting one of the two projects for a part-
nership, recall that agent 1 would prefer project 1 and agent 2 would
prefer project 2. If the two agents agree to share the risk optimally,
they would agree that the riskier project 2 is preferable. Note that the
total value of both projects is higher when the agents are cooperating
than when each agent goes alone. Cooperation is a win-win opportu-
nity for them.

4. Cooperative options and risk aversion

4.1. Optimal risk sharing. As we demonstrate in the previous sec-
tion, the presence of risk aversion does not complicate the situation
dramatically, at least for so-called HARA utility functions, see [14].
Linear sharing rules allow an optimal sharing of the risk. Once the
players agree that they wish to share risk optimaly, the cooperative
game is played on the deterministic amount that the players will ex-
change.
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Let us now go back to the example of Section 2.1. We will denote by
rB and rP the shares of the risky project for the biotech and pharma
company, respectively; mB,mP will be the respective certainty equiva-
lents, and dB, dP will be the agreed certain payoffs with dP + dB = 0.
We first need to find the efficient risk sharing agreement. In order to
do this we have to solve the problem

max
rB ,rP

mB(rBCP+B) +mP (rPCP+B)

s.t. rB + rP = 1.

This is a standard problem in the risk sharing literature [3, 21]. For
the negative exponential utility function the optimal share of risk for
each player is simply proportional to their risk tolerance:

ri =
βi∑
j βj

.

4.2. The core of the Cooperative game. Following the example of
section 2 the core of the game is now given by the following equations:

mB(rB[CB+P − IB+P ]) + dB ≥ mB(CB − IB)

mP (rP [CB+P − IB+P ]) + dP ≥ 0

dB + dP = 0

ri =
βi

βB + βP

, i ∈ {B,P}.

The first two conditions guarantee that each agent’s estimation of the
value is at least as good as going alone. The third condition is a con-
servation law: the total amount that changes hands is zero and the
forth condition will ensure efficient risk sharing.

The core is now one dimensional and involves only the deterministic
amounts di that the two agents will exchange:

(7)
mB(CB − IB)−mB(rB[CB+P − IB+P ]) ≤ dB ≤ mP (rP [CB+P − IB+P ]).

The core is illustrated in Figure 6.

4.2.1. The risk-sharing value of the partnership deal. It is interesting to
consider the special case when CB = CB+P ,IB = IB+P and σB = σB+P .
In this case there are no synergies in the traditional sense. It is not
surprising that when the agents are risk neutral all allocations in the
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Figure 6. The core of the cooperative game with effi-
cient risk sharing

biotech’s core of the cooperative game have the go-alone value CB−IB,
as can be seen from equation (2). Nothing is gained by a partnership.

However, the agents’ risk aversion makes cooperation valuable. It can
be seen from equation (7) that the core has non-empty interior. In
other words, there are gains to be made by cooperating, because of risk
sharing. The set of allocations of these gains amongst the players that
makes no player worse off than going alone forms the new negotiation
set, the ‘Risk sharing’ core of the deal:

mB(CB − IB)−mB(rB[CB − IB]) ≤ dB ≤ mP (rP [CB − IB]).

4.3. Cooperative Options. If the agents can wait with the launch of
the project until uncertainty is resolved, we will need to solve the new
cooperative game. The core will need to satisfy the following equations:
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mB(rB max[CB+P − IB+P , 0]) + dB ≥ mB(max(CB − IB, 0))

mP (rP max[CB+P − IB+P , 0]) + dP ≥ 0

dB + dP = 0

ri =
βi∑
j βj

For our example of negative exponential utility functions, the risk shar-
ing rule only depends on the risk tolerance βi of each player and not the
gamble itself. Therefore we don’t need to solve the optimal risk shar-
ing problem again, it’s the same as before. For other forms of HARA
utility functions, (logarithmic or power law) the optimal share of risk
for each agent depends on the payoff at each state and therefore would
be deferent in the presence of flexibility.
The new core of the cooperative option game can be expressed in terms
of the fixed amounts that will change hands:

mB(max(CB − IB, 0))−mB(rB max[CB+P − IB+P , 0])
≤ dB ≤ mP (rP max[CB+P − IB+P , 0]).

4.3.1. The ‘Asset’ and ‘Option’ value of the deal. Similarly to the risk
neutral case, the asset value (static value) of the deal is the core of the
deal in the absence of flexibility. Each one of these values has a risk
sharing component in the sense that if the partnership has no syner-
gies other than risk sharing, both the asset and the option cores are
non-empty.

Asset core:

mB(CB − IB)−mB(rB[CB+P − IB+P ])
≤ dB ≤ mP (rP [CB+P − IB+P ]).

Option core:

mB(max {CB − IB, 0})−mB(CB − IB)
−mB(rB max {CB+P − IB+P , 0} −mB(rB[CB+P − IB+P ])) ≤ dB ≤

mP (rP max {CB+P − IB+P , 0})−mP (rP [CB+P − IB+P ]).

4.4. Non-cooperative Option. We now focus on a unilateral flex-
ibility: The biotech has the right to opt out of codevelopment as in
Section 2.3. Here we examine a more general opt-out agreement where
the biotech can opt-out for a fixed amount Z (milestone payment) and
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royalties rRCB+P on the revenue CB+P . This is slightly more gen-
eral than the example in Section 2.3, where we had assumed a royalty
rate rR = 0. The biotech company can exercise this option after un-
certainty is resolved and, assuming a linear risk-sharing agrement as
before, would do so if and only if rB(CB+P −IB+P )+dB ≤ Z+rRCB+P

where rB is the biotech’s share of the revenues. The problem of finding
an optimal risk share now becomes:

max
rB ,rP

mB(max{rB(CP+B − IB+P ) + dB, Z + rRCP+B})
+mP (min{rP (CP+B − IB+P )− dB, (1− rR)CP+B − Z})

s.t. rB + rP = 1.

This is a non-smooth problem, due to the max and min terms in the
objective function. Furthermore, we are no longer guaranteed to find
an optimal linear risk sharing rule, especially if the biotech took a sub-
stantial amount of risk in the absence of the non-cooperative option.
The optimal risk sharing rule is no longer linear as the biotech some-
times takes the risk rB and sometimes the risk rR. One way to avoid
this complication is to fix the royalties rate rR = rB where rB is the
optimal risk share for the biotech in the absence of the option to opt-
out. In this way, we allow the biotech to opt-out unilaterally but we do
not affect the efficient risk allocation. In this case, the non-cooperative
option will be exercised only if the amount Z, the milestone, is higher
than the amount dB the biotech receives from the pharma if it doesn’t
opt out. The core now satisfies the following equations:

mB(rB max[CB+P − IB+P , 0]) + max(dB, Z) ≥ mB(max(CB − IB, 0))

mP (rP max[CB+P − IB+P , 0]) + min(dP ,−Z) ≥ 0

dP + dB = 0

ri =
βi

βB + βP

, i ∈ {B,P}.

Solving for dB will give us the core of the new game:

max{Z,mB(max{CB − IB, 0})−mB(rB max{CB+P − IB+P , 0})}
≤ dB ≤ mP (rP max{CB+P − IB+P , 0}).

The effect of such an option is illustrated in figure 7. Similarly to
Section 2.3, we can distinguish three cases depending on the value of
Z and the associated exercise decisions.
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Figure 7. The core with non-cooperative options and
efficient risk sharing

5. Complete Markets

In this final section, we will briefly illustrate the valuation of coop-
erative deals in the presence of complete markets. Complete markets
imply that there exists a traded asset or a set of traded assets that
completely span the uncertain payoffs. Trading in these assets allows
the partnership to hedge all risks, making the risk preferences of each
agent irrelevant. In other words, there exists a replicating portfolio.
Shorting this replicating portfolio completely offsets the payoffs from
the project in each state of the uncertainty. Therefore the only valua-
tion for the investment opportunity that is consistent with the absence
of arbitrage opportunities is the present value of the replicating port-
folio. This is the standard method of pricing financial options, see e.g
Black and Scholes [1], Hull[7].

Going back to the Biotech-Pharma example of section 2.1, we assume
that the competitor in the R&D race is a one-project company whose
shares are traded in the market. Since the company only has one
project, the value of its stock will closely track the success or failure of
their R&D project. Let’s assume that in the case of success the stock
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price will increase from P to Pu, while the value for the biotech in this
scenario will be dBCB. If the project fails the competitor’s stock price
will decrease to Pd, while the value for the biotech will become uBCB.
This is shown in the lattice below2.
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Since the Biotech can trade in the stock of the competitor and in a risk
free asset (with return r=1 for simplicity) it can create a replicating
portfolio such that:

ψBPd + θB = ubCB − IB

ψBPu + θB = dbCB − IB

where ψ is the number of shares bought and θ is the amount invested
in the risk free asset. Solving for ψ and θ gives:

ψB = CB
uB − dB

Pd − Pu

θB = CB
PddB − uBPu

Pd − Pu

− IB

Therefore the present value of the project if the biotech goes alone is

(8)
V B = ψBP + θB

= P−Pu

Pd−Pu
uBCB + (1− P−Pu

Pd−Pu
)dBCB − IB

= qBuBCB + (1− qB)dBCB − IB

2Note that here we are making the assumption that the decision by the Biotech
to launch their drug or not does not affect the value of the competitor. Furthermore
we assume that the market capitalisation of the competitor is large enough so that
any stake bought by the biotech is negligible. Although we recognise that these
assumptions might be unrealistic we make them for simplicity. For models with
market power see Grenadier [6], Roques and Savva[15].
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This value V B is the no arbitrage value of the project. Note that it
doesn’t depend on the subjective probability p as it did in section 2.
The value is also independent of the risk aversion level of the agent as
it is a no arbitrage price. Similarly, in the partnership case we can find
a similar expression to equation (8) for the no-arbitrage value V B+P of
the partnership deal.

Now let us turn our attention to the negotiation set of the partner-
ship deal. Since both agents would have to agree that the value of
the project if the biotech goes alone is V B and that the value of the
partnership project is V B+P , the game is reduced to a deterministic
cooperative game as in Section 2.1.2. The condition for the payoff to
the biotech xB to be in the core is simply

V B ≤ xB ≤ V B+P .

The treatment of the investment opportunity with flexibility, i.e. when
the partners can wait until uncertainty is resolved before committing
to invest is very similar: we first price the biotech’s option to invest,
which is very similar to the pricing of a financial call option. Then we
price the partnership’s call option. By doing so we reduce the stochastic
game again to a deterministic game and the core can be defined exactly
as above.

6. Conclusions and further research

Our aim in this paper was to illustrate some of the effects that op-
tionality has on the synergies created by a partnership. Needless to
say, this paper leaves many questions open. There are at least three
strands of interesting follow-up work: It would be useful to develop a
case study, using the developed simple model or alternative real options
approaches, to make the ideas relevant for practical deal negotiations.
We have had some experience with the developed framework within a
co-development deal negotiation between Cambridge Antibody Tech-
nology Plc., a UK-based biotech company, and Astra Zeneca and will
report on this experience in another paper. More work is needed, how-
ever, to make this framework useful in practice. On the theory side, a
development of the model in continuous time and for more than two
players should be possible. This would provide a general framework for
the investigation of options effects on partnership deal values. Finally,
it would be interesting to investigate the effect of a non-cooperative
Nash game following the partnership. This should shed some light on
the effect of transience on partnership deals.
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